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1. INTRODUCTION

Numerical analysis is one branch of mathematics in which we should
expect considerable dividends from the application of the rigorously
constructive methods advocated by Bishop [1]. Indeed, even if one does not
agree with Bishop's bold statement that

Every theorem proved with idealistic methods presents a challenge: to find a
constructive version and to give it a constructive proof [1, p. 9J.

there is a very strong argument for assent to this dictum III the case of
theorems of numerical analysis.

Consider, for example, the well-known algorithm of Remes for the
computation of best Chebyshev approximants over [0, 1]. With minor
modifications, the procedure of this algorithm can be made constructive in
our (that is, Bishop's) sense: in particular, we must avoid any appeal to the
theorem which asserts the attainment of the supremum of a continuous, real
valued mapping on [0, 1] (cf. [2, p. 4 D. What has not been given until now
is a constructive proof of the convergence of this algorithm.

Here we have the remarkable situation where an important, practical
algorithm has no known rate of convergence in general! We believe that this
state of affairs should never arise in numerical analysis: in our view, an
algorithm is incomplete unless it is presented along with a constructive proof
of its convergence. In keeping with this belief, the main aim of this paper is
to produce a constructive proof of the convergence of the Remes algorithm.

Throughout our work, qo, 1] will be the real linear space (with the usual
"sup" norm) of continuous mappings of [0, 1] into IR, n a positive integer,
and {~p""~n} a subset of qO,l] which satisfies the Haar condition:

if K 1 , ... , K n are pairwise disjoint compact subsets of [0, 1), then

inf{idet[~j(xi)lI: Vi (Xi E K;)} > O.
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(Note that, for constructive purposes, K i , Kj are disjoint if inf{lx i - xjl:
x; E K;, xj E K j } > 0. The constructive Haar condition is discussed in
Section I of [4].) We say that {¢i'''''¢n} is a Chebyshev system over [0,1],
and denote by H the subspace of qo, I] which it spans.

Given a = (ai''''' am) in IR m
, we write IIal1 2 for (L::r=, ai)I/2. We also write

(xE[O,ID

and

Ilcjlll=sup{llcp(x)112:xE [0, I]}

(the latter· being computable, by [2, Chap. 2,4.4 D. Note that, by the
Cauchy-Schwarz inequality,

for all x, y in [0, 1].
We assume familiarity with a general background in constructive analysis

(as found in [1 ] or [2 D, and with the constructive development of
Chebyshev approximation theory [3,4]. However, it is convenient to be
reminded of the following particular case of [4, Proposition 1.1]:

1.1. PROPOSITION. Let n ~ 2 and °<a ~ n-I. Then there exists fJ >°
such that Idet[¢ix;)]1 ~fJ whenever xt,... ,xn belong to [0, I] and
minl';;i<j.;;n Ix; -xjl ~ a. I

We now introduce two important mappings fJ, y: (0, lin] --+ IR +. For each
a E (0, lin j, define

and

fJ(a) = inf{1 ¢1(x)l: x E [0, I]}

= inf{ldet[¢ix;)lI: X p ... , x n E [0, I],

~i~ Ix; -xjl ~ a}
l';;I<J';;n

if n = I,

if n ~ 2,

In the case n ~ 2, fJ(a) is well defined as the mapping x--+ Idet[¢ix;)]1 is
continuous on the compact set {xE [0, 1]n:minl';;i<j.;;nlx;-xjl~a}.
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2. SOME AUXILIARY RESULTS
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The results below are needed for our discussion of the Remes Algorithm in
Sections 3 and 4 below.

2.1. LEMMA. Let °< a ~ n~ I, and let XI''''' xn+I be points of [0, 1] with
mink=" ....n(xk+,-xk)~a. Let ,11"'" An+, be real numbers such that AI> 0,
L7~/ 1,1;1 = 1 and L7~/ Ai'(x;) = O. Then

/

n+1

(_1)r~1 Ar~ (y(a)/II"'y-' {;I (II"I/y(a»k-'

for each r in {I,... , n + 1 f.

Proof By [4,4.1],

(y(a)/II"i)k~'~ (_l)k-' A;-'Ak ~ (II,II/y(a»k-I

for k = 1,..., n + 1; so that

n+1

0<,1;-1= L A;-IIAkl
k=1

n+1
= L (-I)k-IA;-IAk

k=1

n+1

~ L (II"I/y(a»k-I.
k=1

For each r in {I,,,., n + I}, we now have

(_1)r-1 Ar~ A,(y(a)fl'''IY-'

~ (y(a)/II"ly-
,/:t: (II"I/y(a»k-I. I

Let (XI'"'' x n + I) be a strictly increasing sequence of n + 1 points of [0, 1],
and ,11''''' An+I real numbers such that L7~,' 1,1;1 = 1 and L7~/ A;'(x;) = O.
Then (as we leave the reader to prove) IA; I>°for each i (cf. [4, 4.1 D.

Our only application of the next result will be in the proof of a partial
converse to 2.1. However, we regard 2.2 as of considerable interest in its
own right, and are surprised to find no reference to it in the classical
literature.

2.2. PROPOSITION. Let a E qo, 1]. Then there exist operations
J: IR+ --+ IR+, w: IR+ --+ IR+ (depending on a) such that: if [; > 0, and
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Xp""Xn+1 are points of [0, 1] with 0 < mink=I .....n(xk+l-xk)~c5(e), then
there exists h in H with modulus of continuity W, such that maxk=I ..... n+1
I(a - h)(xk)1 ~ e.

Proof It will suffice to take m = n + 1 in the following lemma.

2.2.1. Let mE {2,...,n+ I}. There exist operations e5m:IR+-+IR+, Wm:
IR + --+ IR + such that: if e > 0, and x 1"'" xm are points of [0, 1] with 0 <
mink=I .....m_l(xk+1 - xk) ~ c5m(e), then there exists hm in H with modulus of
continuity Wm' such that maxk=I .....ml(a-hm)(xk)l~e.

We prove 2.2.1 by induction on m. If m = 2, we choose lIf in H so that

°<.u = inf{lIf(x): xE [0, I]} ~ IllIfll ~ 1

[4,2.7]. With WI a common modulus of continuity for a and lIf on [0,1], we
define

(e >0).

Let e>O, 0~xI<x2~1 and x2-xI~c52(e). With h2=a(xl)lIf(Xl)~llIf,

we then have h2E H, hix l ) = a(x 1) and

I(a - h2)(x2)1 ~ lIf(X I) ~ 1Ia(x I) lIf(X2) - a(x2) lIf(X 1)1

~.u ~ 1(1 a(x 1)lllIf(X2) - lIf(X 1)1 + lIf(X I) Ia(x2) - a(x 1)1)

~.u-I(llalllllf(x2) -lIf(xl)1 + !a(x2) - a(xl)I)

~e.

Moreover, if e' > 0, x and y belong to [0, 1] and Ix - yl ~ w2(e'), then

Ih 2(x) - h2(y)1 = lIf(XI)-1 la(xl)lllIf(X) -lIf(y)1

~.u-lilalllllf(x)-lIf(y)1

~e'.

This completes the proof in the case m = 2.
Now let k E {2,,,., n}, suppose we have proved 2.2.1 for m = k, and

consider the case m = k + 1. Let W be a common modulus of continuity for
a and, on [0, 1], and, for each I' > 0, define

wk+l(e) = min(wk(e), w(ey(a)/n(1 + Ilall))),

c5k + 1(1') =! min(w(e/3), W k + 1(1'/3)).

Given I' > 0, let xl'""xk + 1 be points of [0, 1] with

0< . min (Xj+1 -xj)~c5k+l(e),
]= l •..•• k
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and choose r in p,...,k} so that x rt 1- x r < 20kt I(e). Let (x; ,..., xD be a
rearrangement of the numbers xj (j -=1= r) into a strictly increasing sequence,
o=minj~, .....k_,(x}t'-x;) and a=(2n)-I Ok(e/3). Either 2na>o or
o > na. In the former case, 0 <0k(e/3), and so we can find hk in H, with
modulus of continuity W k , such that

(j = I,..., k).

Then

I(a - hk)(xr)1 ~ la(xrt I) - a(xr)1 + I(a - hk)(xrt 1)1

+ Ihk(xrt I) - hk(xr)1

< e/3 + e/3 + e/3

=e.

Thus

(j = I,..., k + I).

As W ktl ~Wk' hk has modulus of continuity W ktl . We therefore need only
set hkt 1= hk •

In the case 0 > na, we choose ¢I ,... , ¢n in [0, I] so that

(jE {I, ...,k+ I},j-=l=r)

and minj~ I.....n-I(¢jt 1- ¢j) ~ a. We then construct hkt 1= r.7~ 1 Ci~i in H
so that hkt 1(¢j) = a(¢) for each j in p,..., n}. (This construction is possible
in view of the Haar condition.) By [4,2.1], we have

where C = (c 1,... , cn)' Hence

for all x, y in [0, I]. It is now clear that hkt 1 has modulus of continuity
W kt I' On the other hand, by our choice of r,

I(a - hk1-1)(xr)1 ~ la(xrt I) - a(xr)1 + I(a - hkt 1)(Xrt 1)1

+Ihkt I(Xrt I) - hkt 1(xr)!

~ e/3 + 0 + ny(a)-lllallll,(xrt I) - ,(xr)112

< e.

This completes our inductive proof. I
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2.3. LEMMA. Let a E qo, 1], and let c5 be as in 2.2. Let (x I'"'' Xn+I) be
a strictly increasing sequence of n + 1 points of [0, 1], and c, ,1.1"'" An+1 real
numbers such that Li':; IAil = 1, Li':/ Ailjl(x;) = 0 and JLI:; Aia(xi)1 ~
2c > O. Then mink = I .... ,n(xk+1 - xk)~ c5(c).

Proof Suppose that mink=I, n(xk+1 -xk) < c5(c), and construct h =
LI=I hi~i in H so that maxk=I, n+ll(a - h)(xk)1 ~ c. Then

n+1 n n+1

)' kh(xi) = )' h· )' A..I..(X.) = 0,
........ l "'--' ) ~ l'f'] I
i~1 j=1 i=1

and so

n+1

~ 2- 1 L l,1.ill(a - h)(xi)1
i=1

n+1

~2-1 L l,1.ilc
i=1

=c/2,

a contradiction. Hence, in fact, mink = 1..... n(Xk + 1 - xk ) ~ c5(c). I

2.4. LEMMA. Let 0 ~ XI < ... <x n +I ~ 1, and let A1"'" An +1 be real
numbers such that L7~IIIAil = 1, L7~; Ai+(X i ) = O. Then

Proof Let boE Hand c E IR satisfy the equations

(i = 1,..., n + 1).

Then [4, 5.1], for each i,

inf max I(a - h)(xk)1 = I(a - bo)(xi)1
heH k=I .....n+1

=Icl·

Noting that (-IY-I Aj >O for each i (2.1), and that L7~iA.ih(Xi)=0 for
each h in H, we see that
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n+1

c=:LIAilc
i=1

n+1

=- :L Ai(-IYc
;=1

n+J

= - :L Ai(a - bo)(xJ
i= J

n+l
=- :L Aia(XJ,

i=1

The result now follows. I

3. THE CONSTRUCTIVE REMES ALGORITHM
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Throughout the remaining two sections, a will be a fixed element of
C[O, I] such that

0< d = dist(a, H) = inf{lla - h II: h E H},

and b will be the best approximant of a in H. That b is computable is shown
in 4.5 of [4]. We wish to discuss the convergence of the constructive Remes
A19orithm, the procedure of which we now describe.

Choose a strictly increasing sequence (x l.1 ,•.. , X I.n + I) of n + 1 points of
[0, I] such that

0< d 1 = inf max I(a - h)(X 1,k)l.
heH k=I, ...• n+1

(We shall discuss the mechanism of this choice in Section 4 below.) Set

with 0 as in 2.2 above. Note that 0 < K < I, by 2.1.
Choose also a strictly decreasing sequence (sn)n;> I of positive numbers

converging to 0, such that S I < d. Construct recursively sequences A in
{O, l}, «XV..,···, xv.n+I))V;> 1 in [0, I]n+l, (dJv;>1 in IR+, and (bv)v;>1 in H, so
that
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(i) 0 ~XV.l < ... <Xv.n+1~ 1,

(ii) 0 <dv= infhEH maxk = l .....n+ I I(a - h)(xv.k)1 = maxk = I .....n+ I

I(a - bv)(xv.k)l,

(iii) A(v) = 0 ~ dv > Iia - bvll- SL"

(iv) A(v) = 1~ Iia - bvll >dv'

(v) A(v) = 0 ~ x v + I,k = x v •k for each k in {l, , n + l},

(vi) A(v) = 1~ there exist integers key) E {I, , n + I} andj(v) E {O, I}
such that

X v + I.; E {xv.,: r = 1,... , n + I} for each i * key),

I(a - bJ(xv+ l.k(v»)1 >Hila - bvll +dJ

and

for each i.

To show that this construction is possible, suppose that we have
constructed A(v), (xv,p...,xv.n+I )' dv and bv satisfying (i}-(iv). If A(v)=O, set
xv+l,k=xv.k (k= I,...,n+ 1), dv+1=dv and bv+1=bv' If A(v) = 1, first
observe that, as d v > 0, there exists r E {O, I} such that

(k = 1,..., n + 1)

[4, 5.2 and the remarks following it]. Applying the method of exchange to
the numbers xv.p,,,,xv,n+1 and ~ [5,pp.107, 108], we can find a strictly
increasing sequence (Xv+I.I"",Xv+l.n+l) .in [0,1], and integers k(v)E
{I,... , n + I },j(v) E {O, I}, with the properties described under (vi) above. Let

d v + l = inf max l(a-h)(x V +·I •k )!'
hEH k=l .....n+l

and construct bv + I E H so that

[4,5.1]. We must show that d
V
+ 1 > O. To do so, choose real numbers

,1.1"'" An + 1 so that "Li~i 1,1.;1 = 1 and "Li':/ A;+(Xv + 1,;) = O. (This is possible
as {?!'..., ?n} satisfies the Haar condition.) Note that, for i = 1,..., n + 1,

(-I)j(v) + I A;(a - bv)(xv+I.;) = (_ly-l A;(-I);+j(v)(a - bJ(xv+I,;)

= IA;II(a - bJ(xv+1.;)1·
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It follows from this and 2.4 that

n+!

= L IAill(a - bv)(xv+l,i)1
i=1

n+l

= dv+ L IAil (I(a - bJ(xv+1,;)1- dv)'
i= 1

265

Now, if i E p" .., n + l} and i"* key), there exists j with x v + I,i = Xv,j' In that
case, by [4,5.1], I(a - bv)(xv+1,;)1 = dv' On the other hand, by definition of
key),

Hence

(3.1 )

and so dV + 1 >dv > O.
We complete the inductive construction as follows. Either d v + 1 >

Iia - bv+lll- sv+1' in which case we set A(V + I) = 0; or Iia - bv+111 >dv+I'

when we set A(V + 1) = 1.
Note that the dichotomy

or

is introduced here because the classical proposition

Vx E IR (x ~ 0 ~ x> 0 or x = 0)

is essentially nonconstructive [1, p. 26].
We now derive a series of results about the convergence of d v to d and of

bv to b.

3.2. LEMMA. For each integer v ~ 1, dv~ dv+ 1 ~ d. Moreover, if
A(V) = I, then dv+1 > dv+ K(lla - bvll- dv)'
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Proof We have

dv= inf max I(a - h)(xv,k)1
heH k=I, ... ,n+1

~ max I(a - b)(xv,k)1k=I, ... ,n+ 1

~lla-bll

=d,

On the other hand, dV + 1 = dv when A(V) = 0; while if A(V) = 1, then, by 3.1
above,

Moreover, in the latter case we have

so that (by 2.3)

Thus, by 2.1,

;

n+1

IAk(v)! ~ (y(a)/II+Ii)v-I t-I (II+II/y(a)t-I~ 2K,

and so dV + 1 >dv+K(lla - bvll- dJ. I

3.3. LEMMA. If A(V) = 1, then d - dv+ I < (1 - K)(d - dJ.

Proof As d = dist(a, H) ~ Iia - bvll, it follows from 3.2 that, if A(V) = 1,

dv+ 1 > dv+ K(lla - bvll- dv)

~ dv+K(d - dJ,

whence d - dv+ I < (1 - K)(d - dJ. I

Before we produce our convergence estimates, it will be helpful to
introduce the numbers c1 = d - d 1 and

(n ~ 2).
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Note that

267

(n ~ 1)

and that the sequence (C n)n;;'1 of positive numbers converges to O.

3.4. THEOREM. For each integer v~ 1, 0 ~ d - dv~ Cv'

Proof In view of 3.2, we need only prove that d - dv~ cv' This is trivial
for v = 1. Suppose we have proved it for v = N, and consider the case v =
N + 1. If ..1.(N) = 0, then

dN +I = dN > II a - bNII- SN ~ d - SN'

and so

If ..1.(N) = 1, then

d-dN +1 < (l-K)(d-dN )

~ (1 - K) cN

This completes the induction. I

3.5. THEOREM. Let w be a modulus of continuity for a - bon [0, 11, t =
min(n-l, w(lla - bll)) and A = n2(11+II/y(t))2n+ I. Then

Ilbv- bll ~A max(sv, K-IC v )

for each integer v~ 1.

Proof If ..1.(v) = 0, then

Iia - bvll-Ila - bll ~ Iia - bvll- dv <sV'

If ..1.(v) = 1, then (3.2)

dV +1 > dv+K(lla - bvll- dv)

~ dv +K(lla - bvll-Ila - bl!);

so that, by 2.4 and 3.4,

Iia - bvll-Ila - bll < K-
1(dv + 1 - dJ

~ K-
1(d - dJ
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Now, the Strong Unicity Theorem [4,4.6] tells us that

Hence
II a - p II ~ II a - b II +A - I II p - b II (p E H).

Ilbv - bll ~AClla - bvll-Ila - bl!)

It must be stressed that we make no claim for the efficiency of the
estimates in 3.4 and 3.5 above. Indeed, we can hardly expect such estimates
to be efficient, as they cover even the most pathological examples of
Chebyshev approximation. In practice, K tends to be very close to 0: for
example, if n = 2, ~I(X) = 1, ~2(X) = x and a(x) = x2, we find that K < 10- 16

•

In 3.5, our ability to estimate Ilbv - bll depends on our knowledge of a
modulus of continuity for a-b. That such knowledge can be obtained
without prior computation of b is shown at the end of [4]. In fact, if Xi = ijn
(i = 1,... , n), J = det[~ixJ],

n

c = 2 lIalllJ I-I n3
/
2(n - I)! n (1 + II~,II)

,= I

and WI is a modulus of continuity for. on [0, I], then Ib(x)-b(y)l~e

whenever x, y belong to [0, I] and Ix - yl ~ wl(ejc).

4. THE FIRST STEP

We close our discussion of the Remes algorithm by showing how to carry
out its first step.

To prove that this can be done in theory is quite simple. By [4,3.4], there
exist j E to, I} and a strictly increasing sequence (x!"", x n + I) of n -+- 1
points of [0, 1] such that

(-It- j (a - b)(xk ) > d - dj2(n + 1).

Construct b I E H so that

I(a - bl)(xk)1 = inf max I(a - h)(x,)1
heH '=I •...• n+1

(k=I,...,n+l)

[4,5.1]. Then for each k E {l,..., n + I}, we have I(b - bl)(xk)1 ~ ndj2(n + 1)
[4,5.3], and therefore

I(a - bl)(xk)! ~ I(a - b)(Xk)I-I(b - bl)(Xk)1

> d - dj2(n + 1) - nd/2(n + 1)

=dj2.
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The trouble with this argument is that it appears to depend on our prior
knowledge of b, the very quantity we are trying to compute. Fortunately,
there is a practical method of starting the Remes algorithm, as we now show.

Define ~k = (k - l)/n (k = 1,... , n + 1), and construct bo E H so that

I(a - bO)(~k)1 = do

= inf max I(a - h)(~r)1
heH r=I .....n+1

for each k E {I,... , n + I} [4, 5.1]. Let w be a modulus of continuity for
a - bo on [0,1], t = min(n- I

, w(d/2)), c = (y(t)/II+IIY1LZ~: (1IcPlI/y(t))k-l.
Either do > 0, in which case we need only set x I.k = ~k for each k; or, as we
may now suppose, do <cd/4. Choose (E [0,11 with I(a - bo)(()1 >3d/4.
Then I( - ~k I~ w(d/2) for each k. Thus there exists r with ~r <( < ~r+ I •

Define xl,r=(, XI.k=~k (kEp, ...,n+l}, k*r). We show that the
sequence (x 1.1 , ... , X I.n + I) will start the Remes algorithm.

Choose j E {O, I} so that (_1)r+j(a - bo)(x l.r) > 3d/4. Let AI'"'' An+1 be
real numbers such that (_I)I+j ..1. 1 >0, Lt:IIIA.;1 = I and Li~/ A.;cP(x l .;) = 0.
Noting that mink=I .....n(Xl,k+I-XI.k)~t and referring to 2.1, we obtain

n+ I n+ 1

L A.;a(x l.;) = L A.;(a - bo)(x l .;)
;=1 ;=1

n+1

= L 1..1.;1 (-I)i+j(a - bo)(x l .;)
;=1

n+1
> L IA;I (-do) + IAr13d/4

;= I.i"'r

~ - do + 3cd/4

>cd/2.

Hence, by 2.4,

n+1°< L A;a(x l •i )
;=1

= inf max I(a - h)(x1.k)l,
heH k=I .....n+1

as we required.
Thus we see that the Remes algorithm can be started after at most a

preliminary "single exchange."
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